Series Part 2—The process of defining QTLs.
In Part 1 of our guidance for quality tolerance limit (QTL) use in clinical research, we summarized the WCG Metrics Champion Consortium (MCC), now part of the WCG Avoca Quality Consortium, QTL Working Group discussions that explored the relationship between QTL and key risk indicators (KRIs). In this second part of the series, we will delve into the process of defining QTLs.
TransCelerate Biopharma has published how and when to define QTLs1 and the link to critical to quality (CtQ) factors described in ICH E8 R1.2 That approach is endorsed here with some additional detail.
The recommended steps for developing QTLs are shown in Figure 1 below. The process should begin in the study design phase when robust statistical considerations are formulated. These considerations are foundational when defining QTL parameters and limits. ICH E8 R1 sets expectations that CtQ factors be established. ICH E6 R23 then focuses on identifying the associated critical data and processes in the study. Risks associated with these critical data and processes should be minimized where possible as part of the study design. It may be attainable, at this stage, to begin identifying possible QTL parameters to monitor the remaining critical risks related to the CtQ factors.
As the operational design of the study is developed, the CtQ factors, critical processes and data—plus any proposed QTL parameters—should be reviewed and revised. At this stage, there may be additional parameters identified that can assist with providing an early signal that the QTL threshold might be deviated from—termed “companion KRIs” by the QTL Working Group and described in more detail in Part 3 of this series.
Figure 1. Recommended steps to define QTLs
Defining QTL thresholds can be challenging. A recent paper4 provides some historical data and approaches to this challenge. Where QTL expectations are defined in the statistical analysis plan, it may be possible to derive a threshold from this information, e.g., the number of participant withdrawals that likely lead to the statistical power being too low for the study.
The selection of meaningful QTLs should be specific to each trial, but there are common areas that usually warrant careful consideration to apply a QTL:
Table 1 below provides areas where QTLs are typically considered, along with the rationale and examples.
Table 1. Typical areas that are used for QTLs. Note: there are additional examples in Table 2 of Ref 1
Table 2 below highlights typical areas where, for most trials, teams should carefully consider alternatives before applying a QTL. It may be difficult to obtain data to monitor these risks effectively via QTLs. Teams should consider whether there is a more effective way of monitoring risks in these areas.
Table 2. Areas typically not used for QTLs
Please see Part 1 of this series and watch for Part 3 highlighting methods for early detection of risk. If you would like more information on the Consortium, please visit our website.
Keith Dorricott, MBB, Senior Consultant, WCG Avoca, Steve Young, Chief Scientific Officer, CluePoints, Linda B. Sullivan, MBA (corresponding author), Senior Advisor, Metrics & Performance Management, WCG, Founder and former Executive Director, Metrics Champion Consortium
Contributors to this article include: Maureen Cunningham, United Therapeutics, Adam Czernik, Janssen, Kevin Douglass, Daiichi Sankyo, Todd Johnson, Lokavant, Olgica Klindworth, Medidata (previously associated with PPD), Crupa Kurien, Pfizer, Kim Lombardo, Moderna, Gillian Pilbrow, ICON PLC, Leslie M. Sam, Wool Consulting Group, Kristin Stallcup, Castor, Yumi Sugiura, BMS, Macarena Sahores, Senior RBQM Operations Consultant, TRI
Legal note: Contributions by the co-authors and contributors are solely their own and are not intended to express the views of their organizations.
Phase II ALPACA Trial Shows Lepodisiran Produces Significant, Sustained Lipoprotein(a) Reductions
March 31st 2025Eli Lilly’s lepodisiran, an investigational siRNA therapy, achieved significant and durable reductions in lipoprotein(a) levels, a major genetic risk factor for cardiovascular disease.
FOCUS Trial Results Show Solriamfetol Significantly Reduces ADHD Symptoms, Severity in Adults
March 27th 2025Solriamfetol achieved the primary and key secondary endpoint of the Phase III FOCUS trial by significantly lowering attention-deficit hyperactivity disorder symptoms and disease severity in adults compared to placebo, with a favorable safety and tolerability profile.
VERITAC-2 Trial Shows Vepdegestrant Significantly Improves Survival in ESR1-Mutant Breast Cancer
March 24th 2025Phase III VERITAC-2 trial results show vepdegestrant significantly improved progression-free survivalcompared to fulvestrant in patients with ESR1-mutant (ESR1m) advanced or metastatic breast cancer, but did not achieve statistical significance in the overall intent-to-treat population.