More attention is being paid to blood pressure effects in new chemical entities under development for non-hypertension indications.
More attention is being paid to blood pressure (BP) effects in new chemical entities under development for non-hypertension indications, especially when these are not anticipated and not thoroughly defined during drug development. Concern by scientists, clinicians, and regulators centers around small-to-moderate effects that can contribute to cardiotoxicity in a therapy otherwise thought to have none. Scientific and regulatory efforts to raise awareness and better define approaches to assessment of BP during drug development were presented in a report published in March 2013 by the Cardiovascular Safety Research Consortium (CSRC), a collaboration between the FDA and multiple academic and drug development experts.1 While comprehensive in presenting the scope of the challenge and in providing an overall approach to evaluation of BP, specific proposals for the design of clinical trials were not made.
This article presents a plan for a systematic approach to identifying BP effects during typical Phase I and Phase II trials. Most compounds will be able to be studied using this approach without additional dedicated trials and without additional subject enrollment. The outcome of this approach would likely not definitively exclude a small BP effect but, rather, would identify the presence of an important BP effect sufficiently early in drug development to define the need for additional testing.
In general, it has been difficult to document the relationships between blood pressure changes and cardiovascular (CV) events, particularly if these blood pressure changes are modest in extent or occur only in a small proportion of treated patients. Clearly, a greater concern will exist with drugs that are intended to be administered chronically rather than for short term or occasional use. But beyond considerations for individual patients, there exists a public health issue: based on epidemiologic data (rather than evidence from randomized trials with cardiovascular endpoints) it can be argued that even small blood pressure changes—if occurring in large cohorts of treated patients—might increase cardiovascular events across a community even if conventional safety studies do not detect an increased risk.
There are many issues to be considered in defining potentially adverse blood pressure effects of drugs used for non-hypertension indications. If blood pressure increases are observed, are they likely to cause major cardiovascular events? Or are the increases in blood pressure a biomarker of some other mechanisms that could cause cardiovascular outcomes? For instance, non-steroidal anti-inflammatory drugs can cause increases in blood pressure and are also associated with increased cardiovascular events. But it is not clear whether these increased event rates are due to the underlying disease (arthritis has been linked to increased cardiovascular risk), to the potential pro-thrombotic effects of these agents, or to the observed increase in blood pressure.2
Another example is the increased mortality observed with the anti-obesity agent, sibutramine. Even though there was an increase in blood pressure in the definitive CV outcomes trial, SCOUT,3 that evaluated this agent, there was no evidence that patients with fatal events while taking this drug actually had increases in blood pressure, compelling the investigators to speculate that other mechanisms were responsible. Perhaps the best direct evidence for blood pressure elevations causing events has been with the vascular endothelial growth factor inhibitors used in cancer therapy: the sharp increases in blood pressure that can be produced by these agents appear to have a direct connection to stroke events.4
From the perspective of adverse blood pressure events, the checklist of questions listed in Table 1, previously presented by one of the authors,5 can be applied to new drug development. The proposal in this article can reasonably only address items 1 though 7, but allowing these to be defined will greatly aid in decisions for answering the others.
Phase I
This approach incorporates testing to detect the presence of important BP effects in Phase I single-ascending dose (SAD) and multiple-ascending dose (MAD) trials. This allows exploration of BP effect during administration of a wide range of doses accompanied by detailed pharmacokinetic (PK) assessment. This will define the pharmacodynamic properties with respect to BP of the compound during single and multiple doses. As the highest dose exposures typically occur during these trials, concentration relationships to BP changes can be established.
Proposed BP measurement utilizes digital, oscillometric equipment, subjects at rest and in the sitting position during the stay in the clinical research unit (CRU). Testing is performed at each dose level, or for first-in-man studies, begun after a reasonable dose level is reached. In MAD studies, data is collected on the first and final days of dosing.
Testing occurs at baseline and approximately 10 postdose observation timepoints bracketing the presumptive time of maximum concentration (Tmax) until after the presumptive primary elimination half-life (T1/2). Using an example of a drug with a Tmax of 3 hours and T1/2 of 6 hours, BP determinations would be scheduled at 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, and 12 hours in relation to dose. There are duplicate BP determinations at each observation with a third reading if the difference between the first 2 readings is >10mmHg systolic or >5 mmHg diastolic. Ideally, baseline values would be collected at multiple times prior to dosing.
After calculation of mean change from baseline for pulse, systolic, diastolic, and mean arterial pressure (MAP) by timepoint at each dose level, analysis of the findings includes comparison to placebo for each of these parameters, and the relationship, for all timepoints and all dose levels combined, of the placebo-adjusted change of the parameters to drug concentration. In addition, there is a tabulation of individual outlier values falling into ranges designated a priori.
Phase II
Collection of detailed BP data during Phase II studies permits the examination of effects that are slow to emerge or which depend on the presence of the underlying disease process, co-morbidities, or concomitant medications. These results are more likely to detect mean effects statistically different from placebo or controls. Also, there are more opportunities for detection of outlier responses and the findings are apt to be more relevant to the clinical setting of use of the drug under development. This proposal includes, in addition to office BP determinations, performance of 24-hour ambulatory blood pressure monitoring (ABPM), which provides unique capability to detect changes—even those of smaller amplitude than those detectable by conventional BP measurements—due to a far larger number of observations and, importantly, during sleep.
During clinic visits, BP assessments occur, envisioning a typical study, on Day 1, Day 7, and Day 28, using digital, oscillometric equipment with subjects in the sitting position and at rest. As in the Phase II proposal, observation times bracket Tmax and continue until about twice Tmax but can be limited to about 5 timepoints. There is measurement of baseline BP values in triplicate predose at the first visit, with duplicate BPs at each observation and a third reading if necessary, as previously described.
Collect 24-hour ABPM baseline data on the day of the last screening visit, and perform 24-hour ABPM after steady state kinetics are reached, for example on Day 28. Begin the ABPM during the clinical visit and after 24 hours, have the device removed by the patient and returned by courier. Program the ABPM to record values three times per hour for 16 hours (5 a.m. to 10 p.m.) and twice hourly for 8 hours (overnight).
The analysis of the office BP data is identical to that described for Phase I. For ABPM, perform calculation of the hourly mean for pulse, systolic, diastolic, and MAP. In addition to hourly analysis, comparison of day vs. night values gives additional important information as does characterization of results by the following categories: dippers (BP falls at night), non-dippers (no fall), reverse dippers, or extreme dippers.
The BP datasets collected using the testing described above, with additional assumptions, can be summarized as follows:
The proposals specify that all data are digital, reproducible, objective, and standardized across subjects, dose groups, visits, and sites. While collecting and analyzing these data impose demands beyond the current design of these trials, these demands are not overly burdensome on investigators, subjects, or statisticians and the information able to be obtained is of high value and, more importantly, is available early in human phase testing.
There is little experience with the proposed approaches and significant questions remain unanswered. Primarily, without knowing the expected variation within and across subjects in these settings, it is unclear what BP effect size could be reasonably expected to be determined for each of the studies. As experience grows, it may be possible to define a BP change signal below which most new compounds could be considered to have a minimal risk for hypertensive side-effects. The level for such a cutoff would be modified based on the compound’s intended duration of use, the target population, and anticipated concomitant therapies.
While the numbers of subjects exposed is small and it is unlikely that mean changes from baseline will be statistically significant, trends are important and can be identified early in human phase testing and, in turn, to direct further investigation prior to performing larger studies
In keeping with the general approach presented in the previously cited report of the CSRC (Sager et al), negative results for BP elevation in early human phase studies would allow more informed planning for BP safety monitoring in later trials. With a positive signal, more intensive monitoring would be necessary, including definition of some or all of the elements referenced in items 8-12 in the checklist presented in Table 1.
The proposals outlined comprise a systematic approach to identifying BP effects during typical Phase I and Phase II trials. Practical and achievable, they will allow for early identification of BP effects of new chemical entities. This information will assist industry, scientific, and regulatory bodies in anticipating unintended CV effects of compounds under development. Consistent BP information would be available early in human phase testing to help guide decisions as to additional testing in Phase II and Phase III.
Daniel B. Goodman, MD, is Medical Director, Cardiocore Inc., email: [email protected]; Michael A. Weber, MD, is Professor of Medicine, Department of Medicine, State University of New York, Downstate College of Medicine, email: [email protected].
Reaching Diverse Patient Populations With Personalized Treatment Methods
January 20th 2025Daejin Abidoye, head of solid tumors, oncology development, AbbVie, discusses a number of topics around diversity in clinical research including industry’s greatest challenges in reaching diverse patient populations, personalized treatment methods, recruitment strategies, and more.
Optimizing Phase III Oncology Trial Recruitment with Data-Driven Insights
February 3rd 2025A pharmaceutical company aimed to launch a Phase III clinical trial for a new oncology drug, focusing on efficient and effective patient recruitment across diverse regions. They evaluated patient populations by analyzing demographics, social determinants of health, and geography. Investigator profiling included practice details, affiliations, referral networks, and clinical trial experience. The final step involved selecting and extracting target lists for implementation.