Teams need to keep close track of ingredients, processing parameters, and material performance so that they can use their R&D data to decide exactly which materials to make next.
The chemical and materials industry contributes roughly $5.7 trillion to global GDP and supports an estimated 120 million jobs according to a recent report published by the International Council of Chemical Associations (ICCA).
To meet massive demand, chemicals and materials research and development (R&D) teams face many challenges, including the need to move at speed. These teams need to accelerate how they conduct their research, get to a material, and get to market. That means adopting nimble workflows and flexible informatics solutions that let them:
Customers often demand incredibly short turnaround times of weeks or even days. On-time delivery can be complicated by secondary challenges, such as regulatory changes that restrict usage or access of key ingredients or supply chain issues due to external factors, such as COVID, conflict, weather events, trade embargos, and taxes. Careful accounting of exactly when and how ingredients are used is essential so that finding suitable alternatives is easier if circumstances require.
Teams need to keep close track of ingredients, processing parameters, and material performance so that they can use their R&D data to decide exactly which materials to make next. Good decision support requires the ability to connect material properties to test data. But, transforming raw R&D data into the insights that propel innovation can be an onerous process that is only getting more challenging as teams struggle to find informatics solutions that can handle their needs around data volume, sharing, automation, and analysis. Teams often need to also leverage their historical data and knowledge, which can be next-to-impossible when data are in many different states with digitization projects at different stages. Key data may be difficult to find and use if they are scattered across various reports, data silos, and even in personal machines or paper notebooks.
C&M processes are often quite complex and can vary widely and use different testing regimens and equipment. Teams making shampoo are going to have a very different set of processing conditions and tests than teams making tires. Finding an informatics solution that accommodates variance—even within different groups in the same company—can be a struggle and researchers have often had to rely on cobbled together or less-than-ideal solutions.
Over the past several years, the market has become increasingly committed to sustainability, as companies aim to create less waste, reduce pollution, and minimize environmental impact. For example, LEGO hopes to make most of its products from sustainable sugarcane by 2030, and Adidas has unveiled the world’s first performance shoe made from biodegradable biofibers. This focus on sustainability will have a wide-ranging impact—from ingredient selection, tracking and origin-tracing to later product testing.
While C&M teams know that creating a future-ready lab is imperative, making that change can be a huge endeavor. Legacy solutions consisting of disconnected electronic laboratory notebooks (ELNs), laboratory information management systems (LIMS), and loosely linked applications often fall short. Furthermore, many companies are still early in their journeys toward digitization and are still struggling with issues such as isolated systems and poorly integrated pieces. Companies must address these challenges to improve upon issues such as data quality and transparency, process efficiency, and artificial intelligence/machine learning preparedness.
Many of the informatics solutions available to address these challenges are targeted primarily to life sciences, and although some similarities exist between C&M and life sciences, there are also some very impactful differences. The innovation cycle is broadly similar: both life science and C&M researchers generally follow some sort of Make-Test-Decide workflow. They both want to be able to query data and see all inputs and outputs; they want to learn from what has been done before and track trends; they want to see what they made yesterday and what that can that tell them about what they need to make today. However, C&M research differs greatly in some key elements, such as materials used, how testing is done, shorter timelines, and more varied equipment.
Plus, there is an incredible amount of variance within the C&M space. Teams may be making things as diverse as batteries, semiconductors, advanced printing equipment, building insulation, milling products, and consumer goods. While it may seem implausible that any single solution could successfully address the needs of such varied production processes, when looking closer, these specialty areas all share some common goals around things such as experiment planning and project management, tracking of compositional data/mixtures, process exploration, and analysis and characterization of resulting materials.
The impact of an informatics system on a team’s success can be massive. A good informatics system can accelerate research and development by providing connections between material properties and test data and thereby supporting efficient and effective decision making. Unfortunately, as most C&M teams can attest, this is not easy to achieve with disconnected ELNs, LIMS, and loosely integrated applications. Transforming instrument data into the insights that propel innovation is an onerous process, and that process is only getting more challenging as data-management issues grow.
As C&M teams face growing pressure to work faster, smarter, and more sustainably, it is now more important than ever for them to create a future-ready C&M lab. It is time to think beyond the traditional options of disconnected ELNs, LIMS, and applications, and to look toward next-generation technology that blends elements of each to deliver a powerful and flexible chemicals and materials R&D solution that helps accelerate data-driven C&M innovation.
About the Author
Melanie Nelson, director of Product Management, Solutions and Integrations at Dotmatics.
Driving Diversity with the Integrated Research Model
October 16th 2024Ashley Moultrie, CCRP, senior director, DEI & community engagement, Javara discusses current trends and challenges with achieving greater diversity in clinical trials, how integrated research organizations are bringing care directly to patients, and more.
AI in Clinical Trials: A Long, But Promising Road Ahead
May 29th 2024Stephen Pyke, chief clinical data and digital officer, Parexel, discusses how AI can be used in clinical trials to streamline operational processes, the importance of collaboration and data sharing in advancing the use of technology, and more.