Cost to Develop and Win Marketing Approval for a New Drug Is $2.6 Billion, According to the Tufts Center for the Study of Drug Development
Developing a new prescription medicine that gains marketing approval, a process often lasting longer than a decade, is estimated to cost $2,558 million, according to a new study by the Tufts Center for the Study of Drug Development.
The $2,558 million figure per approved compound is based on estimated:
The new analysis, which updates similar Tufts CSDD analyses, was developed from information provided by 10 pharmaceutical companies on 106 randomly selected drugs that were first tested in human subjects anywhere in the world from 1995 to 2007.
“Drug development remains a costly undertaking despite ongoing efforts across the full spectrum of pharmaceutical and biotech companies to rein in growing R&D costs,” said Joseph A. DiMasi, director of economic analysis at Tufts CSDD and principal investigator for the study.
He added, “Because the R&D process is marked by substantial technical risks, with expenditures incurred for many development projects that fail to result in a marketed product, our estimate links the costs of unsuccessful projects to those that are successful in obtaining marketing approval from regulatory authorities.”
In a study published in 2003, Tufts CSDD estimated the cost per approved new drug to be $802 million (in 2000 dollars) for drugs first tested in human subjects from 1983 to 1994, based on average out-of-pocket costs of $403 million and capital costs of $401 million.
The $802 million, equal to $1,044 million in 2013 dollars, indicates that the cost to develop and win marketing approval for a new drug has increased by 145% between the two study periods, or at a compound annual growth rate of 8.5%.
According to DiMasi, rising drug development costs have been driven mainly by increases in out-of-pocket costs for individual drugs and higher failure rates for drugs tested in human subjects.
Factors that likely have boosted out-of-pocket clinical costs include increased clinical trial complexity, larger clinical trial sizes, higher cost of inputs from the medical sector used for development, greater focus on targeting chronic and degenerative diseases, changes in protocol design to include efforts to gather health technology assessment information, and testing on comparator drugs to accommodate payer demands for comparative effectiveness data.
Lengthening development and approval times were not responsible for driving up development costs, according to DiMasi.
“In fact,” DiMasi said, “changes in the overall time profile for development and regulatory approval phases had a modest moderating effect on the increase in R&D costs. As a result, the time cost share of total cost declined from approximately 50% in previous studies to 45% for this study.”
The study was authored by DiMasi, Henry G. Grabowski of the Duke University Department of Economics, and Ronald W. Hansen at the Simon Business School at the University of Rochester.
Driving Diversity with the Integrated Research Model
October 16th 2024Ashley Moultrie, CCRP, senior director, DEI & community engagement, Javara discusses current trends and challenges with achieving greater diversity in clinical trials, how integrated research organizations are bringing care directly to patients, and more.
AI in Clinical Trials: A Long, But Promising Road Ahead
May 29th 2024Stephen Pyke, chief clinical data and digital officer, Parexel, discusses how AI can be used in clinical trials to streamline operational processes, the importance of collaboration and data sharing in advancing the use of technology, and more.
The Rise of Predictive Engagement Tools in Clinical Trials
November 22nd 2024Patient attrition can be a significant barrier to the success of a randomized controlled trial (RCT). Today, with the help of AI-powered predictive engagement tools, clinical study managers are finding ways to proactively reduce attrition rates in RCTs, and increase the effectiveness of their trial. In this guide, we look at the role AI-powered patient engagement tools play in clinical research, from the problems they’re being used to solve to the areas and indications in which they’re being deployed.