Amit Vasanji, PhD and Brett A Hoover from ERT discuss technology and the steps to successful clinical trials.
Pharmaceutical developers are increasingly asked by regulators to include imaging analysis when evaluating clinical trial data. In fact, imaging in clinical trials has grown by an astonishing 700% since 2001. This phenomenal growth also adds a whole new level of risk and complexity to clinical trials. From compliance challenges, site measurement inconsistencies, and image transfer issues to subjective assessments, incomplete data, and timeline delays, study teams need to manage and evolve their imaging strategies to position trials for success.
That said, clinical trial sponsors need not fret about the inclusion of imaging in their clinical development programs. As with many of today’s clinical research activities, technological advancements are often leveraged by trial sponsors to overcome these challenges and accelerate their research. Here, we present the rationale behind the utility of image analysis software and suggest best practices for sponsors looking to leverage this technology to ensure successful extraction of clinical trial imaging endpoints.
How Technology Is Changing Clinical Trials
The addition of imaging to a clinical trial, regardless of the therapeutic area, indication, or treatment, creates a layer of complexity and produces new regulatory and workflow compliance challenges. A given trial can have any number of images from a variety of modalities that require review by clinical expert readers (e.g., radiologists, pathologists, dermatologists, cardiologists), typically at multiple sites. The more variables present, the more opportunities exist for error(s), compliance missteps and subjective, often biased, data.
Fortunately, technology exists to help guide the imaging evaluation process. For example, image analysis software can be implemented to direct and guide a reader through the analysis of each imaging time point and even pre-process and segment anatomical structures of interest in lock-step with the study’s imaging charter and image evaluation protocol (IEP). This minimizes protocol deviations and ensures that each reader’s unique bias does not creep into the analysis process by focusing the reader on targeted endpoints whose workflows are outlined in the trial specific IEP. Software-guided reads are becoming an important part of trial design and the development of the trial’s IEP to help ensure all images are read uniformly and consistently, minimizing inter-/intra-reader variability and the potential for imaging-related queries. Simply stated, image analysis software brings a myriad of benefits to clinical studies, including accuracy, consistency, adaptability, and compliance.
Accuracy & Consistency
By designing an IEP that includes software-guided reads tailored to the trial’s imaging charter, trial leaders help enable and protect the accuracy and reproducibility (i.e., quality) of imaging endpoint data. Image readers are prompted by the software when exams are ready to be read-each reader interfacing with the software, imaging exams, and measurement and viewing tools within a unified imaging management system. And, the software requires the reader to comply with the IEP’s workflow-minimizing the introduction of reader-specific bias and unintended protocol deviations. As image observations and measurements are completed, the software captures each read (i.e., automated eCRF field population and corresponding image measurement overlays), providing a clear audit trail, eliminating eCRF transcription errors, and reducing data queries to accelerate database lock at study completion.
Adaptability
Very few trials run entirely smoothly. Unexpected challenges always seem to arise, such as the introduction of new or replacement readers. Utilizing image analysis software also facilitates the transition to or introduction of new clinical expert readers into the imaging evaluation process, while minimizing any potentially negative impact this might have on final data quality and consistency. And, if the new reader makes an error, the software helps identify, document and correct the anomaly, and signal if additional IEP training and/or image evaluation workflow adjustments may be required. Tracking of reader assessments by the software can provide real-time rates of discordance and can be particularly helpful for studies with batched reads.
Compliance
While urging trial sponsors to incorporate more rigorous, controlled imaging methods and objectives into their studies, the FDA and other regulators want to see consistency and objectivity in all facets of any clinical trial. Consistent image acquisition, processing, and evaluation processes are not only important for ensuring imaging endpoint data quality, objectivity and reproducibility, these elements are also crucial for meeting regulatory standards for obtaining marketing approval. Surprisingly, many trials conducted today often have little or no traceability for imaging-related measurements. For example, reader delineation of a tumor on a lung CT is often not saved and documented. This prevents a sponsor or monitor from auditing the read consistency. More importantly, not being able to visually recall prior measurements in a longitudinal study prohibits accurate assessment of therapeutic efficacy.
Best Practices for Implementing Image analysis software
Each clinical study with a primary, secondary, and/or exploratory imaging endpoint will have many image observations and measurements to sift through. The larger the study, and the more complex the therapeutic area and indication, the more sponsors and CROs risk acquiring a potentially overwhelming number of imaging data points, which can lead to problems if the study team is not well prepared. Key to preparedness is comprehensive, purposeful, and well documented validation of the image analysis software (method) to be implemented in the study. While the software may have been previously validated by the original vendor or developer, that doesn’t necessarily mean it’s the most effective tool for a particular study and associated workflows.
Validating the image processing and analysis software method specifically for the study’s protocol, site acquisition equipment, and imaging endpoints is necessary for two key reasons: 1) to ensure the software method is optimal for your study and will produce accurate, objective, quantitative data, and 2) to avoid regulatory and compliance hang-ups.
These issues can be addressed by following a few simple-yet essential-steps:
By following these steps, trial leaders can have confidence that image analysis software will deliver accurate and reproducible data that will satisfy the regulatory approval requirements of clinical development programs.
Conclusion
Clinical trial leaders need to be prepared to meet the growing need for incorporating imaging into their clinical development plans. Trial sponsors who continue to take a traditional, de-centralized approach to imaging may be placing their trial at unnecessary risk, as well as incurring delays and added expense. By centralizing this important endpoint measurement with advanced technology solutions, sponsors and CROs can meet regulators’ increasing interest in clinical trial imaging and ensure data accuracy while mitigating risks and improving trial efficiencies.
Amit Vasanji, PhD is Chief Technology Officer, Imaging, ERT
Brett A. Hoover is Product Management, Imaging, ERT
How Digital Technology and Remote Assessment Strategies Can Aid Clinical Trial Research
July 24th 2020While there's been hopeful news on treatments and vaccines, sponsors should plan to discuss necessary strategies and contingencies at the outset of new studies or re-opening of halted studies during the COVID-19 pandemic.